- Gọi CH, C'H' lần lượt là đường cao của tam giác ABC,AB'C'.
- Ta có: CH⊥AB (CH là đường cao của tam giác ABC).
C'H'⊥AB (C'H' là đường cao của tam giác AB'C')>
=>CH//C'H'.
- Xét tam giác AB'C' có:
CH//C'H' (cmt)
=>\(\dfrac{AC}{AC'}=\dfrac{AH}{AH'}\)(định lí Ta-let)
*\(\dfrac{S_{ABC}}{S_{AB'C'}}=\dfrac{CH.AB}{C'H'.AB'}=\dfrac{AC}{AC'}.\dfrac{AB}{AB'}\)