tth, Trần Thanh Phương, Nguyễn Văn Đạt, Nguyễn Huy Thắng, Sky SơnTùng, @Nguyễn Việt Lâm
tth, Trần Thanh Phương, Nguyễn Văn Đạt, Nguyễn Huy Thắng, Sky SơnTùng, @Nguyễn Việt Lâm
Cho các số thực a,b,c thỏa mãn \(a^2+b^2+c^2=3\) và \(a+b+c+ab+bc+ca=6\)
Tính giá trị biểu thức : A=\(\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2019}}\)
1) Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Tính giá trị biểu thức: D= \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
2) Cho a+b+c=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\); abc khác 0. Ch/m \(a^6+b^6+c^6=3a^2b^2c^2\)
a)Cho 3 số a,b,c thỏa mãn abc=2019. Tính giá trị biểu thức:
M=\(\frac{2019a}{ab+2019a+2019}+\frac{b}{bc+b+2019}+\frac{c}{ac+c+1}\)
b)Cho b,c ≠0 và a+b+c=abc và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Cminh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
1,cho a,b,c là các số dương thỏa mãn abc=1
Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
Chứng minh: \(a^3+b^3+c^3=3abc\) thì a+b+c=0 hoặc a=b=c. Áp dụng cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị của biểu thức: \(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Chứng minh: \(a^3+b^3+c^3=3abc\) thì a+b+c=0 hoặc a=b=c. Áp dụng cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị của biểu thức: \(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Cho a,b,c khác 0 ,a+ b +c=0
Chứng minh :\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)Tính giá trị biểu thức P=\(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}\)
Cho 3 số dương a, b, c thỏa mãn a + b + c = 6. Tính GTLN của biểu thức
\(P=\dfrac{ab}{6-c}+\dfrac{bc}{6-a}+\dfrac{ca}{6-b}\)
Cho 3 số a, b, c khác 0 thỏa mãn: ab+bc+ca=0. Hãy tính giá trị biểu thức \(N=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)