Lời giải:
a) Xét tam giác $HEA$ và $HDB$ có:
$\widehat{HEA}=\widehat{HDB}=90^0$
$\widehat{EHA}=\widehat{DHB}$ (đối đỉnh)
$\Rightarrow \triangle HEA\sim \triangle HDB$ (g.g)
b) Xét tam giác $CKD$ và $CDA$ có:
$\widehat{C}$ chung
$\widehat{CKD}=\widehat{CDA}=90^0$
$\Rightarrow \triangle CKD\sim \triangle CDA$ (g.g)
$\Rightarrow \frac{CK}{CD}=\frac{CD}{CA}\Rightarrow CD^2=CK.CA$ (đpcm)
c) Xét tam giác $ADK$ và $DCK$ có:
$\widehat{AKD}=\widehat{DKC}=90^0$
$\widehat{ADK}=\widehat{DCK}$ (cùng phụ $\widehat{KDC}$)
$\Rightarrow \triangle ADK\sim \triangle DCK$ (g.g)
$\Rightarrow \frac{AD}{DC}=\frac{DK}{CK}\Leftrightarrow \frac{FD}{2DC}=\frac{DK}{2CN}$
$\Rightarrow \frac{FD}{DC}=\frac{DK}{CN}$
Tam giác $FDK$ và $DCN$ đồng dạng với nhau do:
$\frac{FD}{DC}=\frac{DK}{CN}$ (cmt)
$\widehat{FDK}=\widehat{DCN}$ (cùng phụ $\widehat{KDC}$)
$\Rightarrow \frac{DFK}=\widehat{CDN}$
$\Rightarrow \widehat{DFK}+\widehat{FDN}=\widehat{CDN}+\widehat{FDN}$
$\Leftrightarrow 180^0-\widehat{FSD}=\widehat{FDC}=90^0$
$\Rightarrow \widehat{FSD}=90^0$ nên ta có đpcm.