Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
cho tam giác nhọn abc nội tiếp đường tròn (o).các đường cao ad,be,cf cắt nhau tại h.ad kéo dài cắt nhau tại điểm k(k khác a).đường thẳng ef cắt (o) tại m và n(f nằm giữa e và m). a,chứng minh d là trung điểm của hk. b,chứng minh oa vuông góc với mn. c,chứng minh am là tiếp tuyến của đường tròn ngoại tiếp tam giác mdh.
1) Cho DABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC). Đường cao BE của tam giác kéo dài cắt đường tròn tâm O tại K. Kẻ KD vuông góc với đường thẳng BC tại D.
a) Chứng minh bốn điểm K, E, D, C cùng thuộc một đường tròn. Suy ra KB là tia phân giác của
b) Từ K kẻ KI vuông góc với đường thẳng AB tại I. Chứng minh ba điểm D, E, I thẳng hàng.
c) Qua E kẻ đường thẳng vuông góc với đường thẳng OA, cắt đường thẳng AB tại H. Chứng minh CH // KI
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O; R), các đường cao BE, CF (E thuộc AC, F thuộc AB). b) Đường thẳng EF cắt đường tròn (O; R) tại M và N (F nằm giữa M và E). Chứng minh AM = AN.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;F;E;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn ngoại tiếp
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam gíac ABC nhọn ( AB< AC) nội tiếp đường tròn (O), 3 đường cao AD,BE, CF cắt nhau tại H; AD cắt ( )0 tại K, tiếp tuyến tại C của (O) cắt FD tại M, AM cắt (O) tại I, BI cắt MD tại N. Chứng minh 3 điểm C, N, K thẳng hàng
Cho \(\Delta ABC\) có ba góc nhọn nội tiếp đường tròn tâm O. Đường thẳng vuông góc với BC tại B cắt (O) tại M và cắt đường thẳng AC tại D. Gọi N là điểm đối xứng của M qua BC, AB cắt CN tại E.
a)C/m ba điểm M,O,C thẳng hàng.
b)C/m DA.DC=DM.DB.
c)C/m 4 điểm A,D,E,N thuộc 1 đtròn.
d)Cho biết AB=AC. C/m góc BNC= 2 lần góc BDC.
Cho (O) và điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB, AC (B, C là tiếp điểm). Gọi OH cắt BC tại H.
a) C/m A, B,O, C cùng thuộc 1 đường tròn
b) Kẻ đường cao CD. Gọi AD cắt đường tròn tại E. Gọi I là trung điểm của ED. C/m 5 điểm A, B, I, O, C cùng thuộc 1 đường tròn
c) C/m BD // OA
d) C/m \(\Delta AHE\) đồng dạng \(\Delta ADO\)
e) C/m \(\Delta OHD\) đồng dạng \(\Delta ODA\)