Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thế Phúc Anh

Cho a,b,c là những số nguyên thoả mãn: \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)CM: a3+b3+c3 chia hết cho 3.

1 like cho bạn nào trả lời đúng.

An Trịnh Hữu
8 tháng 7 2017 lúc 22:26

\(=>\left(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

Phân tích vế trái ta được ( hằng đẳng thức) :>

\(=\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{2}{ac}+\dfrac{2}{bc}+\left(\dfrac{1}{c}\right)^2\)

\(=\dfrac{1}{a^2}+\dfrac{2}{ab}+\dfrac{1}{b^2}+\dfrac{2}{ac}+\dfrac{2}{bc}+\dfrac{1}{c^2}\)

\(=>\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ac}+\dfrac{2}{ab}+\dfrac{2}{bc}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

\(=>2.\left(\dfrac{1}{ac}+\dfrac{1}{ab}+\dfrac{1}{bc}\right)=0\)

\(=>\dfrac{b}{abc}+\dfrac{c}{abc}+\dfrac{a}{abc}=0\)

\(=>a+b+c=0.abc=0\)

\(=>a+b=-c\)

\(=>-\left(a+b\right)=c\)

Thay vào ta có:

\(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3\)

\(=-3a^2b-3ab^2=3\left(-a^2b-ab^2\right)⋮3\)

CHÚC BẠN HỌC TỐT NHA....


Các câu hỏi tương tự
Nguyễn Thế Phúc Anh
Xem chi tiết
Cô bé áo xanh
Xem chi tiết
KIRI NITODO
Xem chi tiết
Nguyễn Thế Phúc Anh
Xem chi tiết
Huy Bùi Quang
Xem chi tiết
Nguyệt Ca
Xem chi tiết
Annh Phươngg
Xem chi tiết
Nguyễn Tú Anh
Xem chi tiết
Mộc Lung Hoa
Xem chi tiết