Ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\Rightarrow\left\{{}\begin{matrix}a=3k\\b=5k\\c=7k\end{matrix}\right.\)
\(\Rightarrow\frac{2019b-2020a}{2019c-2020b}=\frac{2019.5k-2020.3k}{2019.7k-2020.5k}=\frac{4035k}{4033k}=\frac{4035}{4033}>\frac{4033}{4033}=1\)
Vậy \(\frac{2019b-2020a}{2019c-2020b}>1\left(đpcm\right)\)