Áp dụng bđt Bu-nhi-a: (a2+b2+c2)(12+22+32)≥(a+2b+3c)2
⇔(a2+b2+c2).14≥142⇔(a2+b2+c2).14≥142( do a+2b+3c=14a+2b+3c=14(gt)).
mà a2+b2+c2=14 nên xuất hiện dấu bằng của bđt
từ đó tính đc a,b,c...
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Áp dụng bđt Bu-nhi-a: (a2+b2+c2)(12+22+32)≥(a+2b+3c)2
⇔(a2+b2+c2).14≥142⇔(a2+b2+c2).14≥142( do a+2b+3c=14a+2b+3c=14(gt)).
mà a2+b2+c2=14 nên xuất hiện dấu bằng của bđt
từ đó tính đc a,b,c...
cho a,b,c thỏa mãn a+b+c=0 và a2=2(a+c+1)(a+b-1). tính giá trị A=a2+b2+c2
Cho số thực a, b không âm thỏa mãn a2+b2≤2
Tìm giá trị lớn nhất của biểu thức: C=\(\sqrt{a\left(29a+3b\right)}+\sqrt{b\left(29b+3a\right)}\)
Cho a, b, c là 3 số thực dương thỏa mãn: a+2b+3c=3. Tìm GTNN của biểu thức: \(Q=\dfrac{a+1}{1+4b^2}+\dfrac{2b+1}{1+9c^2}+\dfrac{3c+1}{1+a^2}\)
Ch a, b, c là 3 số dương thỏa mãn: a+b+c=6. Tìm giá trị lớn nhất của biểu thức: \(A=\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\)
Tìm tất cả các số thực a,b,c thoả mãn đồng thời các điều kiện a2 + b2 + c2 = 38, a + b = 8 và
b + c ≥ 7
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
cho ba số thực không âm a,b,c thỏa mãn ab+ac+bc=1 .Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a^2+b^2+c^2+3}{a+b+c-abc}\)
Cho a, b, c là các số thực khác 1 thỏa mãn a.b.c = 1, biết rằng:
a^2 + b^2 + c^2 - (1/a^2 + 1/b^2 + 1/c^2) = 8(a + b + c) - 8(ab + bc + ca)
Tính giá trị của biểu thức P = 1/a-1 + 1/b-1 + 1/c-1