Sửa đề: CMR \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\geq \frac{3}{2}\)
Đặt biểu thức đã cho là $P$
Áp dụng BĐT AM-GM:
\(P=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}=(a+b+c)-\left(\frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2}\right)\)
\(\geq (a+b+c)-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=a+b+c-\frac{ab+bc+ac}{2}\)
Mà cũng theo BĐT AM-GM
\(3(a+b+c)=(a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow a+b+c\geq ab+bc+ac\)
Do đó: \(P\geq a+b+c-\frac{ab+bc+ac}{2}\geq a+b+c-\frac{a+b+c}{2}=\frac{a+b+c}{2}=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$