trước hết theo bđt tam giác chỉ ra được rằng \(\dfrac{a}{b+c-a};\dfrac{b}{a+c-b};\dfrac{c}{a+b-c}>0\)
áp dụng bất đẳng thức Cauchy-Schwarz:
\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
\(A=\dfrac{a^2}{ab+ac-a^2}+\dfrac{b^2}{ab+bc-b^2}+\dfrac{c^2}{ac+bc-c^2}\)
\(A\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)-a^2-b^2-c^2}\)
Áp dụng bất đẳng thức AM-GM:
\(2\left(ab+bc+ac\right)-\left(a^2+b^2+c^2\right)\)
\(\le2\left(ab+bc+ac\right)-\left(ab+bc+ac\right)\)
\(=ab+bc+ac\)
Mặt khác,theo AM-GM: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
Hay: \(A\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)-a^2-b^2-c^2}\ge\dfrac{3\left(ab+bc+ac\right)}{ab+bc+ac}=3\)
Đặt \(b+c-a=x,a+c-b=y,a+b-c=z\)
\(\left\{{}\begin{matrix}x+y=b+c-a+a+c-b=2c\\y+z=a+c-b+a+b-c=2a\\x+z=b+c-a+a+b-c=2b\end{matrix}\right.\)
Có
\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
\(\Leftrightarrow2A=\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)
\(\Leftrightarrow2A=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\ge6\)
\(\Leftrightarrow2A=\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{y}{z}+\dfrac{z}{y}\right)+\left(\dfrac{x}{z}+\dfrac{z}{x}\right)\)
Ápdụng bất đẳng thức \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\forall a,b>0\)
\(\Rightarrow2A\ge6\)
\(\Rightarrow A\ge3\left(đpcm\right)\)