Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Le Chi

Cho a,b,c là ba cạnh của một tam giác

Chứng minh rằng

A= a/(b+c-a) + b/(a+c-b) + c/(a+b-c) lớn hơn hoặc bằng 3

 Mashiro Shiina
3 tháng 4 2018 lúc 23:13

trước hết theo bđt tam giác chỉ ra được rằng \(\dfrac{a}{b+c-a};\dfrac{b}{a+c-b};\dfrac{c}{a+b-c}>0\)

áp dụng bất đẳng thức Cauchy-Schwarz:

\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

\(A=\dfrac{a^2}{ab+ac-a^2}+\dfrac{b^2}{ab+bc-b^2}+\dfrac{c^2}{ac+bc-c^2}\)

\(A\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)-a^2-b^2-c^2}\)

Áp dụng bất đẳng thức AM-GM:

\(2\left(ab+bc+ac\right)-\left(a^2+b^2+c^2\right)\)

\(\le2\left(ab+bc+ac\right)-\left(ab+bc+ac\right)\)

\(=ab+bc+ac\)

Mặt khác,theo AM-GM: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

Hay: \(A\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)-a^2-b^2-c^2}\ge\dfrac{3\left(ab+bc+ac\right)}{ab+bc+ac}=3\)

nam do
3 tháng 4 2018 lúc 23:19

Đặt \(b+c-a=x,a+c-b=y,a+b-c=z\)

\(\left\{{}\begin{matrix}x+y=b+c-a+a+c-b=2c\\y+z=a+c-b+a+b-c=2a\\x+z=b+c-a+a+b-c=2b\end{matrix}\right.\)

\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

\(\Leftrightarrow2A=\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)

\(\Leftrightarrow2A=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\ge6\)

\(\Leftrightarrow2A=\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{y}{z}+\dfrac{z}{y}\right)+\left(\dfrac{x}{z}+\dfrac{z}{x}\right)\)

Ápdụng bất đẳng thức \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\forall a,b>0\)

\(\Rightarrow2A\ge6\)

\(\Rightarrow A\ge3\left(đpcm\right)\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Le Chi
Xem chi tiết
Khánh Nguyễn
Xem chi tiết
tôi là ai
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyen Nguyen
Xem chi tiết
Big City Boy
Xem chi tiết
tran thi mai anh
Xem chi tiết