Đề sai nhé . \(\ge3\)
Đặt \(b+c-a=x;a+c-b=y;a+b-c=z\) ( x ; y ; z luôn > 0 )
\(\Rightarrow\left\{{}\begin{matrix}c=\dfrac{x+y}{2}\\a=\dfrac{y+z}{2};b=\dfrac{x+z}{2}\end{matrix}\right.\)
Ta có : \(A=\dfrac{y+z}{2x}+\dfrac{x+z}{2y}+\dfrac{x+y}{2z}\)
Áp dụng BĐT Cô - si cho 3 số , ta có :
\(A\ge3\sqrt[3]{\dfrac{\left(y+z\right)\left(x+z\right)\left(x+y\right)}{2x.2y.2z}}\ge3\sqrt[3]{\dfrac{8xyz}{8xyz}}=3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c\)