Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bướm Đêm Sát Thủ

cho a,b,c là 3 cạnh của tam giác.Chứnh minh rằng:

\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-a}\ge3\)

hattori heiji
2 tháng 4 2018 lúc 22:40

đặt b+c-a=x

a+c-b=y

a+b-c=z

ta có x+y=2c

x+z=2b

z+y=2a

ta lại có

2A=\(\dfrac{2a}{x}+\dfrac{2b}{y}+\dfrac{2c}{z}\)

2A=\(\dfrac{z+y}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)

2A=\(\dfrac{z}{x}+\dfrac{y}{x}+\dfrac{x}{y}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{y}{z}\)

2A=\(\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge2+2+2=6\)

=>2A= \(\dfrac{2a}{x}+\dfrac{2b}{y}+\dfrac{2c}{z}\ge6\)

<=>A≥3 (chia cả 2 vế cho 2 ) (đpcm)

Neet
3 tháng 4 2018 lúc 19:47

Xin góp thêm cách nữa:

Am-Gm thẳng cho 3 số:

\(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\)

việc còn lại chỉ việc chứng minh :

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Áp dụng BĐT Am-Gm ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)=b^2\)

\(\left(b+c-a\right)\left(c+a-b\right)\le c^2\)

\(\left(c+a-b\right)\left(a+b-c\right)\le a^2\)

Nhân lại ta có đpcm.Dấu = xảy ra khi a=b=c


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Thánh cao su
Xem chi tiết
tran thi mai anh
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Big City Boy
Xem chi tiết
Huỳnh Nhật Nam
Xem chi tiết