cho 3 số thực không âm a,b,c sao cho a2+b2+c2=1 . cmr \(\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\) (giải chi tiết với ạ !!!!)
Cho a,b, c là các số thực dương. CMR:
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{a+b+c}{3}\)
CMR: Với các số thực dương a;b;c thì\(\dfrac{a^3+2abc+b^3}{c^2+ab}+\dfrac{a^3+2abc+c^3}{b^2+ac}+\dfrac{b^3+2abc+c^3}{a^2+bc}\ge2\left(a+b+c\right)\)
cho a,b,c >0, a2+b2+c2=1
cmr : \(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\)
Cho a, b, c là các số thực dương thỏa mãn: a+b+c+ab+bc+ac=6. Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
Cho a,b,c là các số thực dương. CMR
\(\dfrac{a^5}{a^2+ab+b^2}+\dfrac{b^5}{b^2+bc+c^2}+\dfrac{c^5}{c^2+ca+a^2}\ge\dfrac{a^3+b^3+c^3}{3}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
cho a,b,c > 0 tìm giá trị nhỏ nhất của 2( a + b + c ) + \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) Khi a2+b2+c2 = 3
Cho 3 số dương a, b, c thỏa mãn: ab+bc+ca=3. Chứng minh: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\)