Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hải An

Cho a,b,c là 3 số thực dương thỏa mãn \(\dfrac{1}{a^2}\)+ \(\dfrac{1}{b^2}\) + \(\dfrac{1}{c^2}\)=1

Tìm GTLN : P = \(\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\) + \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\) + \(\dfrac{1}{\sqrt{5c^2+2ca+2a^2}}\)

Đinh Đức Hùng
30 tháng 5 2018 lúc 9:30

Ta có :\(\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}=\dfrac{1}{\sqrt{\left(4a^2+4ab+b^2\right)+\left(a^2-2ab+b^2\right)}}\)

\(=\dfrac{1}{\sqrt{\left(2a+b\right)^2+\left(a-b\right)^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{2a+b}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\) (Cosi)

Tương tự cộng lại ta được :

\(P\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{3}\sqrt{3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}=\dfrac{1}{\sqrt{3}}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)


Các câu hỏi tương tự
DƯƠNG PHAN KHÁNH DƯƠNG
Xem chi tiết
dia fic
Xem chi tiết
camcon
Xem chi tiết
camcon
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Bách Bách
Xem chi tiết