Cho a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức: \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho a, b, c khác 0 thỏa mãn:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho bốn số hữu tỉ khác nhau a,b,c,d thỏa mãn hệ thức ad=cb.
Chứng tỏ rằng từ hệ thức trên ta có các tỉ lệ thức sau:
a) \(\frac{a+b}{b}=\frac{c+d}{d}\)
b) \(\frac{a-b}{b}=\frac{c-d}{d}\)
1/ Cho tỉ lệ thức: \(\frac{ab}{\overline{bc}}=\frac{b}{c}\)với \(c\ne0\)
Chứng minh tỉ lệ thức \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
2/ Cho dãy tỉ số bằng nhau: \(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)
Chứng minh rằng a = b = c
1) Với điều kiện nào của a và b thì ta có tỉ lệ thức \(\frac{a}{b}=\frac{a+c}{b+c}\) với c \(\ne\) 0
2) Cho các số a,b,c,d \(\ne\) 0, thỏa mãn b2 = ac; c2 = bd; b3 + c3 +d3 \(\ne\) 0
Chứng minh: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
cho ba cố khác nhau từng đôi một và khác 0 thỏa mãn : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\) . CM: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) ko phụ thuộc vào các giá trị của a; b; c
Cho 4 số nguyên dương a,b,c,d thỏa mãn \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)\) và b là TBC của a và c.
CMR: Từ 4 số a,b,c,d có thể lập thành tỉ lệ thức.
1, Cho a,b,c khác 0; a+b+c khác 0
thỏa mãn ac=\(b^2;ab=c^2\)
Tính M=\(\frac{b^{333}}{a^{111}.c^{222}}\)
2, Tính A=\(1+\frac{1}{2}\left(1+2\right)\)
1.Tính:
\(a,A=\sqrt{12\frac{1}{4}}.\left(\frac{-2}{7}\right)^2-\left[2,\left(4\right).2\frac{5}{11}\right]:\left(\frac{-42}{5}\right)\)
\(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}\)
2. Tìm x,y,z biết:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
b) \(\sqrt{\left(x+\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
c) \(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}\) và x-2y+3z=14.
d) \(5^x+5^{x+1}+5^{x+2}=3875\).
3. a) Cho bốn số a,b,c,d>0 thỏa mãn: \(\frac{1}{c}=\frac{ }{1}2.\left(\frac{1}{b}+\frac{1}{a}\right)\)và b là trung bình cộng của a và c. Chứng minh rằng bốn số đó lập nên một tỉ lệ thức.
b) Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) (với a,b,c,d khác 0)
Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)