Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
oooloo

cho a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\). Tính giá trị biểu thức \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Nguyễn Lê Phước Thịnh
17 tháng 12 2020 lúc 21:56

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)

Do đó: 

\(\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

Thay a+b=2c;b+c=2a và c+a=2b vào biểu thức \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+b\right)}{abc}\), ta được: 

\(P=\dfrac{2a\cdot2b\cdot2c}{abc}=\dfrac{8abc}{abc}=8\)

Vậy: P=8

Trương Huy Hoàng
17 tháng 12 2020 lúc 22:00

Ta có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\) = \(\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}\) (t/c dãy tỉ số bằng nhau)

hay \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=1\) (1)

Ta cũng có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+b+c-a}{a+c}\) (t/c dãy tỉ số bằng nhau)

hay \(\dfrac{a+b-c}{c}=\dfrac{2b}{a+c}\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{2b}{a+c}=1\) \(\Leftrightarrow\) a + c = 2b (*)

Tương tự ta cũng có: a + b = 2c (**); b + c = 2a (***)

Thay (*); (**); (***) vào P ta được:

P = \(\dfrac{2a.2b.2c}{abc}\) = 2.2.2 = 8

Vậy P = 8

Chúc bn học tốt!

 

 


Các câu hỏi tương tự
dia fic
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
poppy Trang
Xem chi tiết
Big City Boy
Xem chi tiết
Gallavich
Xem chi tiết
ITACHY
Xem chi tiết