cho a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\). Tính giá trị biểu thức \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho các số a, b, c khác nhau đôi một và \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\). Tính giá trị của biểu thức: \(M=\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
Cho 3 số a, b, c khác nhau đôi một và \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\). Tính giá trị của biểu thức: \(M=\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
Cho: \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\). Chứng minh: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\) trong đó a, b, c đôi 1 khác nhau và khác 0
Cho a,b,c là các số nguyên khác nhau đôi một. CMR biểu thức sau có giá trị là 1 số nguyên: \(P=\dfrac{a^3}{\left(a-b\right).\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right).\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right).\left(c-b\right)}\)
Tính giá trị của biểu thức sau , biết rằng: a+b+c=0 \(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right).\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
cho a,b,c≠0 thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+c-b}{b}\).
tính \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Tìm giá trị của biểu thức sau biết rằng a+b+c=0
\(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
Cho 3 số a, b, c khác 0 thỏa mãn: ab+bc+ca=0. Hãy tính giá trị biểu thức \(N=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)