cho a,b không âm thỏa mãn \(\left(a-b\right)^2=a+b+2\)
CMR: \(\left(1+\dfrac{a^3}{\left(b+1\right)^3}\right)\left(1+\dfrac{b^3}{\left(a+1\right)^3}\right)\le9\)
Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh rằng
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\le\frac{3}{4}\)
1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)
Cho a, b, c > 0 thoã mãn: ab + bc + ca = 3. CMR: \(\dfrac{1}{1+a^2\left(b+c\right)}+\dfrac{1}{1+b^2\left(c+a\right)}+\dfrac{1}{1+c^2\left(a+b\right)}\le\dfrac{3}{abc}\)
Cho a,b,c\(\in\left[0;2\right]\) và a + b + c = 3. CMR :
\(3\le a^2+b^2+c^2\le5\)
1. \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr: \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}+\frac{bc}{\sqrt{\left(1-a\right)^2\left(1+a\right)}}+\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\le\frac{3\sqrt{2}}{8}\)
2. \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c\le1\end{matrix}\right.\). Cmr: \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ac\left(a+c\right)}\ge\frac{87}{2}\)
3. \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=2abc\end{matrix}\right.\). Cmr: \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}\ge\frac{1}{2}\)
4. \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=2015\end{matrix}\right.\). Tìm min \(A=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^2+x^2}\)
Mn giúp mk với ạ! Thanks nhiều
CMR: \(\left(1+\frac{a+b+c}{3}\right)^3\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\ge8\sqrt{abc}\) \(\forall a,b,c\ge0\)
Cho a,b,c là ba số thực dương thoãm ãn \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\left(abc\right)^2\)
CMR : \(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=8\)
Cho a,b,c>0
C/m: \(1+\sqrt[3]{abc}\le\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)