Cho tam giác ABC vuông tại A. Trên cạnh BC lấy E sao cho BE = BA. Qua E vẽ đường thẳng vuông góc với BC tại E, đường thẳng này cắt AC tại D và cắt đường thẳng AB tại F
a) Chứng minh AD = ED và BD là tia phân giác của góc B
cho tam giác abc có a=90 độ.ab=3cm;ac=4cm.am là trung tuyến (m thuộc bc).trên tia đối ma lấy điểm d sao cho ma=md
a)tinh bc
b)ab=cd;ab//cd
c)h là trung điểm bm,trên đường thẳng ah lấy điểm e sao hả=hê.ce cắt ad tại f.cm f là trung điểm của ce
Chứng minh rằng : A\(\cup\)(B\(\cap\)C ) = (A\(\cup\)B) \(\cap\)(A\(\cup\)C)
* Toán 10 :
Bài 1.a) 2(4x-3)-3(x+5)+4(x-10)=5(x+2)
b) \(\dfrac{11}{2}\) - (\(\dfrac{2}{5}\)+x)= \(\dfrac{2}{3}\).(6x+1)
Bài 2. a) |x-1| +2x=4
b) x+|x|=2x
Bài 3.
3\(^{x+1}\) - 3\(^{x-2}\) - 3x = 153
Bài 4.Cho tam giác ABC vuông tại A, biết AC =4cm, ab=3cm, và AH ⊥ BC . Tính độ dài của BC, AH. HB. Biết HC=\(\dfrac{16}{5}\) (làm tròn kết quả đến số thập phân thứ hai)
Bài 5. Cho tam giác ABC cố góc A bằng 90 độ, phân giác AD. Từ B kẻ đường thẳng song song với AD cắt tia CA ở E.So sánh các cạnh của tam giác BEC
4/ Cho tam giác vuông ABC cố góc A bằng 90 độ , phân giác BD. Kẻ DE vuông góc với BC (E ∈BC ). Trên tia đối của tia AB lấy điểm BF sao cho AF=CE . CHứng minh rằng:
a) BD là đường trung trực của AE
B) Ba điểm D, E, F thẳng hàng
C) AD < DC
5/ Cho tam giác ABC cân ở A ( góc A khác 120 độ ). Vẻ ra phía ngoại của tam giác Các tam giác đều ABD và ACE. Gọi O là giao điểm của BE và CD. CMR :
a) BE=CD
b) D và E cắt đều đường thẳng BC
c) OB=OC
Cho a,b,c>0 thỏa mãn \(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge\left(abc\right)^2\)
Chứng minh rằng \(\frac{\left(ab\right)^2}{\left(a^2+b^2\right)c^3}+\frac{\left(bc\right)^2}{\left(b^2+c^2\right)a^3}+\frac{\left(ac\right)^2}{\left(a^2+c^2\right)b^3}\ge\frac{\sqrt{3}}{2}\)
cho a, b, c > 0
chứng minh: \(\dfrac{a^3}{b}\ge a^2+ab-b^2\)
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H thuộc BC). Gọi N là
trung điểm của AC.
a) Chứng minh ABH ACH
b) Hai đoạn thẳng BN và AH cắt nhau tại G, trên tia đối của tia NB lấy K sao cho
NK NG . Chứng minh AG CK // .
b) Chứng minh G là trung điểm của BK.
c) Gọi M là trung điểm AB. Chứng minh BC AG GM
Cho 2 tập hợp A và B. Biết tập hợp B khác rỗng, số phần tử của tập B gấp đôi số phần tử của tập A∩B và A∪B có 10 phần tử. Hỏi tập A và B có bao nhiêu phần tử? Hãy xét các trường hợp xảy ra và dùng biểu đồ Ven minh họa?
Cho 2 tập hợp A và B. Biết tập hợp B khác rỗng, số phần tử của tập B gấp đôi số phần tử của tập A∩B và A∪B có 10 phần tử. Hỏi tập A và B có bao nhiêu phần tử? Hãy xét các trường hợp xảy ra và dùng biểu đồ Ven minh họa?