\(P=\dfrac{1}{2021c}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{1}{2021c}\left(\dfrac{4}{a+b}\right)=\dfrac{4}{2021c\left(a+b\right)}\ge\dfrac{16}{2021\left(c+a+b\right)^2}=\dfrac{16}{2021}\)
\(P_{min}=\dfrac{16}{2021}\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)