Đặt biểu thức cần tìm GTNN là A .
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(a+\dfrac{1}{4a}\text{≥}2\sqrt{a.\dfrac{1}{4a}}=1\)
\(b+\dfrac{1}{4b}\text{≥}2\sqrt{b.\dfrac{1}{4b}}=1\)
\(c+\dfrac{1}{4c}\text{≥}2\sqrt{c.\dfrac{1}{4c}}=1\) ≥
⇒ \(a+b+c+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}3\)
⇔ \(a+b+c+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}3+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ⇔ \(a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\text{ ≥}3+\dfrac{3}{4}.\dfrac{\left(1+1+1\right)^2}{a+b+c}\text{ ≥}3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}=\dfrac{15}{2}\)⇒ \(A_{Min}=\dfrac{15}{2}."="\text{⇔}a=b=c=\dfrac{1}{2}\)