Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có:
\(C=\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Còn không dùng AM-GM,để nghĩ đã
Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có:
\(C=\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Còn không dùng AM-GM,để nghĩ đã
Cho a,b,c là 3 số thưc dương thỏa mãn abc=1 . Cmr . \(\dfrac{a}{a^{3\:}+a+1\:\:\:}+\dfrac{b}{b^3+b+1}+\dfrac{C}{c^3+C+1\:}\le1\)
cho các số dương a,b,c thỏa mãn: (1+a/b)(1+b/c)(1+c/a)=8
Tính: P=a^3+b^3+c^3/abc.
Mn giải nhanh guips mk nhoa, gấp lắm!!!
cho các số dương a,b,c thỏa mãn: (1+a/b)(1+b/c)(1+c/a)=8
Tính: P=a^3+b^3+c^3/abc.
Mn giải nhanh guips mk nhoa, gấp lắm!!!
cho a;b;c khác 0 và 1/a+1/b+1/c=0.Chứng minh rằng 1/a3+1/b3+1/c3=3/abc
CMR nếu a,b,c là các số thực dương thỏa mãn điều kiện
abc=ab+bc+ca thì \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}< \frac{3}{16}\)
Cho a, b, c là các số dương thỏa mãn: a3 + b3 + c3 = 3abc. Tính giá trị biểu thức:
P = \(\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)\)
Cho a,b,c là 3 số khác 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\).CMR \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
cho biểu thức A=a3+b3+c3 tính giá trị A khi a+b+c=0 và abc=1
Cho abc khác 0, \(a^3+b^3+c^3=3abc\) . Tính A= \(\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)