Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
Cho 3 số dương a,b,c
CMR : \(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(a+c\right)^2}\ge\dfrac{9}{4\left(ab+ac+bc\right)}\)
Cho a , b , c là các số thực dương . Chứng minh rằng
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Chứng minh :
a, \(\dfrac{a+b+c}{3}\dfrac{>}{ }\sqrt{\dfrac{ab+bc+ca}{3}}\) với a,b,c>0
b,\(\dfrac{a^2+b^2+c^2}{3}\dfrac{>}{ }\left(\dfrac{a+b+c}{3}\right)^2\)
c,\(\dfrac{x^2+2}{\sqrt{x^2+1}}\dfrac{>}{ }2\)
d,\(\dfrac{a^3+b^3}{2}\dfrac{>}{ }\left(\dfrac{a+b}{2}\right)^3\)
cho a,b,c >0 thõa mãn abc = 1
\(CMR:\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(a+b\right)}\ge\dfrac{3}{4}\)
1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\)
2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức:
\(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\)
4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước.
Tìm GTLN của \(A=k\left(xy+yz+xz\right)+\dfrac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\right]\)
5) Chứng minh rằng:
\(\left(3a+2b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{45}{2}\)(Bài này quên điều kiện hay gì đó rồi, ae nếu thấy sai thì fix giùm)
6) Cho a là số thay đổi thỏa mãn: \(-1\le a\le1\)
Tìm GTLN của b sao cho bđt sau đúng:
\(2\sqrt{1-a^4}+\left(b-1\right)\left(\sqrt{1+a^2}-\sqrt{1-a^2}\right)+b-4\le0\)
7) Cho a,b,c dương thỏa mãn \(abc=1\). Chứng minh rằng:
\(\sum\dfrac{a}{\sqrt{8b^3+1}}\ge1\)
8) Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sum\dfrac{a^2-b^2}{\sqrt{b+c}}\ge0\)
Với mọi số thực dương a,b,c. chứng minh rằng:
4(\(\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\))+8\(\left(\dfrac{c}{\left(2a+b\right)^2}+\dfrac{b}{\left(2c+a\right)^2}+\dfrac{a}{\left(2b+c\right)^2}\right)\ge3\left(a+b+c\right)\)
Cho các số \(a;b;c\in\left[\dfrac{1}{2};1\right]\).Tìm maximize of:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}+\dfrac{3abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Giúp vs mọi người ơi
1. a,b,c > 0. C/m: \(\dfrac{c^2}{a+b}+\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}>=\dfrac{a+b+c}{2}\)
2. a,b,c > 0 và a+b+c <= 1. C/m: \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}>=9\)
3. a,b,c là 3 cạnh của một tam giác; \(p=\dfrac{a+b+c}{2}\)
C/m: \(\dfrac{1}{\left(p-a\right)^2}+\dfrac{1}{\left(p-b\right)^2}+\dfrac{1}{\left(p-c\right)^2}>=\dfrac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
4. a,b,c > 0 và (a+c)(b+c)=1
C/m: \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(a+c\right)^2}+\dfrac{1}{\left(b+c\right)^2}>=4\)