CM số hửu tỉ
Đặt a-b=x ,b-c=y,c-a=z (x,y,z \(\in Q\))
=> x+y+z=a-b+b-c+c-a=0
Có \(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)}\)
=\(\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\frac{x+y+z}{xyz}}\) =\(\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\frac{0}{xyz}}\)(do x+y+z=0)
=\(\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\in Q\)(do x,y,z thuộc Q)
Vậy A\(\in Q\)