Cho tam giác ABC vuông tại A có AH vuuong gócvới BC. Cho AB = 6cm, AC = 8cm. Gọi M là trung điểm HC
a) Tính BC, AH và góc AMH?
b) Không tính, hãy chứng minh tan góc AMH = 2 tan . C
Chứng minh sin\(\dfrac{A}{2}< =\dfrac{BC}{AC+AB}\)
Cho DABC vuông tại A có AH ^ BC. Cho AB = 6cm, AC = 8cm. Gọi M là trung điểm HC
a) Tính BC, AH và góc AMH?
b) Không tính, hãy chứng minh tan góc AMH = 2 tan . C
Cho ∆ABC nhọn đường cao AD. Vẽ DE vuông góc AB tại E, DF vuông góc AC tại F.
a) Chứng minh: AD2 = AB.AE và AB.AE = AC.AF
b) Chứng minh: ∆AEF đồng dạng ∆ACB.
c) Cho biết góc ABC 60 độ , góc ACB 45 độ , AD = 40 cm. Tính AB, AC, BC.
Cho tam giác ABC vuông tại A,đường cao AH. Gọi M,N lần lượt là hình chiếu vuông góc của H lên AB và AC. a, biết AC bằng 16 cm, sinCAH=4/5. Tính độ dài các cạnh BC,AB và cosB b,chứng minh AM x AB = AN x AC và tam giác ABC đồng dạng với tam giác AMN. c, chứng minh MA x MB + NA × NC=HB×HC d, Chứng minh S AMN/ S ABC=sin²B×sin²C
cho tam giác ABC vuông tại A có đường cao AD,AB=a và AC=a\(\sqrt{2}\)
a) Giải tam giác ABC(độ dài cạnh tính theo a và số đo góc làm tròn đến phút)
b) Gọi M là trung điểm BC,N là trung điểm AC và E là giao điểm AM và BN.Chứng minh AM⊥BN tại E
c) Chứng minh \(\widehat{BND}\)=\(\widehat{BCE}\)
a)Chứng minh 1+tan2α = \(\dfrac{1}{cos^2a}\)
b)Áp dụng câu a tính sin a,cos a biết tan a =\(\dfrac{3}{5}\)
Bài 1: cho tam giác ABC có AB=6 cm, AC=8 cm, BC=10 cm
a, Chứng minh tam giác ABC vuông
b, Từ A hạ AH vuông góc BC (H thuộc BC). Gọi M,N lần lượt là hình chiếu của H trên AB và AC. Tính BH và MN
c, Tính\(_{ }S_{MHNA}\)
d, Chứng minh góc AMN = góc ACB
Bài 2: Cho tam giác ABC nhọn. Chứng minh \(AB^2=AC^2+BC^2-2.AC.BC.\cos C\)
Cho tam giác ABC vuông tại A, chứng minh rằng AC/AB=SinB/SinC