\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+c}=a\left(\frac{a}{b+c}\right)+b\left(\frac{b}{a+c}\right)+c\left(\frac{c}{a+b}\right)\)
\(=a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{a+c}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)\)
\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)-a-b-c\)
\(=a+b+c-a-b-c=0\)