Cho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng
Xin sự trợ giúp câu e ah,
Bài 2. Cho tam giác ABC vuông tại A ( AB < AC ), BD là phân giác của góc ABC ( D thuộc AC ). Kẻ CE vuông góc với BD tại E.
a. Chứng minh ∆ABD ~ ∆ECD;
b. Chứng minh = ;
c, Khi AB = 3cm; AC = 4cm, hãy tính độ dài đoạn AD và SCDE ?
d. kẻ đường thẳng vuông góc với BD tại B, đường thẳng này cắt đường thẳng AC tại K. Chứng minh: AD. CK = AK.CD;
e. Gọi T là giao điểm của AE và BK, H là hình chiếu vuông góc của A trên BD. Chứng minh ba điểm C; H; T thẳng hàng.
Cho ΔABC vuông tại B (AB<AC), đường cao BH.
a) Cm: ΔABC∼ΔAHB và AB2 = AH.AC
b)Vẽ AD là tia phân giác trong \(\widehat{BAC}\) (D thuộc BC) cắt BH tại M
Cm: \(\dfrac{AM}{AD}=\dfrac{DB}{DC}\)
c) Kẻ CI vuông góc với AD tại I. Chứng minh: AD2 = AB.AC-BD.CD
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
Cho tam giác ABC vuông tại A, có AB/BC = 4/5; AC=18cm. Vẽ đường phân giác BD của tam giác ABC. trên cạnh AB lấy H sao cho AH/AB=1/3, từ B vẽ đường thẳng vuông góc với HC tại E, đường thẳng BE cắt AC tại F.
a)Tính AD, DC
B)Chứng minh tam giác HAC đồng dạng tam giác HEB
c)Chứng minh AF.AC=1/3AB2
d)Trên tia đối của tia FA, lấy M sao cho FM=2FA.
Chứng minh MB vuông góc BC
Chỉ dùng kiến thức lớp 8, em cảm ơn
1.Cho tam giác \(ABC\left(AB< AC\right)\) , tia phân giác góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\) , cắt \(AC\) ở \(E\) . Chứng minh \(BD=CE\)
2.Cho tam giác \(ABC\) có \(AB< AC\) , \(D\) là một điểm nằm giữa \(A\) và \(C\) . Chứng minh rằng \(\Delta ABD=\Delta ACB\) và \(AB^2=AC.AD\)
Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E. Chứng minh BD = CE ?
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH.
a, Chứng minh tam giác BHA ~ tam giác BAC. Từ đó suy ra BA2 = BH.BC
b, Lấy I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng: CH.CB = CI.CK
c, Tia BK cắt HA tại D. Trên tia đối của tia KC lấy điểm M sao cho BM = BA. Chứng minh rằng góc BMD = 90o
Cho tam giác ABC vuông tại A , có AB=12cm , AC=16cm . Kẻ đường cao AH ( H thuộc BC )
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC
b,Tính độ dài các đoạn thẳng BC , AH
c, Gọi AD là đường phân giác của \(\widehat{BAC}\) ( D thuộc BC ) ; DE là đường phân giác của \(\widehat{ADB}\) ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)