a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng vớiΔABC
b: ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
c: BC=căn 8^2+6^2=10cm
AM là phân giác
=>MB/AB=MC/AC
=>MB/4=MC/3=(MB+MC)/(4+3)=10/7
=>MB=40/7cm; MC=30/7cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng vớiΔABC
b: ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
c: BC=căn 8^2+6^2=10cm
AM là phân giác
=>MB/AB=MC/AC
=>MB/4=MC/3=(MB+MC)/(4+3)=10/7
=>MB=40/7cm; MC=30/7cm
cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,đường cao AH a/ chứng minh tam giác ABC đồng dạng với tam giác HBA . Tính BC,AH. b/ kẻ HM vuông góc với AB tại M. chứng minh: HM^2=MA*MB c/ MC cắt AH tại I , đường thẳng qua I và song song với AC cắt AB,BC lần lượt tại E,F . CM: IF=IE
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
Cho tam giác ABC vuông tại A vẽ đường cao AH có AB=6cm,AC=8cm
a) chứng minh ∆HBA đồng dạng với ∆ABC
b)tính BC,AH,BH
c)kẻ đường phân giác AD của góc A.Tính tỉ số DB/DC
Cho tam giác ABC vuông tại A có AB =12cm, AC=16cm, vẽ đường cao AH
a, Chứng minh: Tam giác HBA đồng dạng với tam giác ABC
b, Tính BC, AH, tính diện tích tam giác ACH
c, Trong tam giác ADB kẻ phân giác DE (E thuộc AB). Trong tam giác ADC kẻ phân giác DF (F thuộc AC):
1) Tính : BD, DC
2) Chứng minh rằng: EA/EB . DB/DC . FC/FA = 1
Giúp mik vs ạ ......:(((((
Cho tam giác ABC vuông tại A, có AB= 8cm, đường cao AH. Tia phân giác của góc C cắt AB tại D.
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Tính BC, BD, AD
c) Từ B vẽ BK vuông góc với CD tại K, BK cắt AH kéo dài tại E, trên CD lấy điểm S sao cho BA=BS. Chứng minh BF vuông góc với EF
Cho hình chữ nhật ABCD. kẻ AH vuông góc BD.
a) chứng minh tam giác HBA đồng dạng tam giác CDB.
b) cho AB=6cm, BC=8cm. Tính BD.
c) diện tích của tam giác HBA
-Giúp mình câu c với ạ
Cho \(\Delta\)ABC vuông tại A; AB= 12cm; AC= 16cm. Đương cao AH
a, Chứng minh \(\Delta\)HBA đồng dạng với\(\Delta\)ABC
b, Tính BC, AH
c, trong \(\Delta\)ABC, kẻ phân giác AD. Trong \(\Delta\)ADB kẻ phân giác DE. Trong \(\Delta\)ADC kẻ phân giác DF. Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FE}=1\)
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE
Cho tam giác ABC có góc A bằng 90 độ,AB=6cm,BC=10cm,đường phân giác BM(M thuộc AC).Từ A hạ AH vuông góc BM cắt BC tại điểm K a)Chứng minh: tam giác AMB đồng dạng với tam giác HKB b)Tính AC,AM,BM c)Tính diện tích tam giác BHK d)Chứng minh: AK.BK bằng 2AM.BH
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm.Từ B kẻ đường thẳng // với AC;phân giác góc BAC cắt BC tại M và cắt đường thẳng AB tại N a ) Chứng mình tam giác BMN đồng dạng với tam giác CMA b ) chứng minh AB/AC=MN/AN C) từ N kẻ NE vuông góc với AC (E thuộc AC) NE cắt BC tại I tính BI