Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Đức Anh

Cho a,b,c >0 và a+b+c=1.

C/m \(ab+bc+ca\le\dfrac{2}{7}+\dfrac{9abc}{7}\)

HT2k02
10 tháng 4 2021 lúc 21:43

Một bài bất đẳng thức khá đặc trưng với phương pháp đổi biến p,q,r. Mình sẽ phiên từ lời giải đổi biến sang biến đổi tương đương nhé. 
\(ab+bc+ca\le\dfrac{2}{7}+\dfrac{9abc}{7}\\ \Leftrightarrow7\left(ab+bc+ca\right)\left(a+b+c\right)\le2\left(a+b+c\right)^3+9abc\\ \Leftrightarrow7\left(a^2b+a^2c+b^2c+b^2a+c^2a+c^2b+3abc\right)\le2\left(a^3+b^3+c^3+3a^2b+3a^2c+3b^2c+3b^2a+3c^2a+3c^2b+6abc\right)+9abc\\ \Leftrightarrow2a^3+2b^3+2c^3\ge a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\left(1\right)\)Thật vậy, áp dụng bất đẳng thức Cosi cho cặp 3 số dương ta có:

\(a^3+a^3+b^3\ge3a^2b;b^3+b^3+c^3\ge3b^2c;c^3+c^3+a^3\ge3c^2a\\ \Rightarrow a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)

Tương tự : \(a^3+b^3+c^3\ge a^2c+b^2a+c^2b\)

Suy ra (1) được chứng minh

Dấu bằng xảy ra khi và chỉ khi a=b=c=1/3 

---- Tick cho mình với ----- 


Các câu hỏi tương tự
Tường Nguyễn Thế
Xem chi tiết
dia fic
Xem chi tiết
Luân Đào
Xem chi tiết
Big City Boy
Xem chi tiết
Luyri Vũ
Xem chi tiết
王俊凯
Xem chi tiết
Dat
Xem chi tiết
Khởi My
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết