\(P=\dfrac{a}{4-3a}+\dfrac{b}{4-3b}+\dfrac{c}{4-3c}=\dfrac{a^2}{4a-3a^2}+\dfrac{b^2}{4b-3b^2}+\dfrac{c^2}{4c-3c^2}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{4\left(a+b+c\right)-3\left(a^2+b^2+c^2\right)}\) (BĐT Cauchy-Schwarz)
\(=\dfrac{1}{4-3\left(a^2+b^2+c^2\right)}\)
Ta có: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow4-3\left(a^2+b^2+c^2\right)\le4-\left(a+b+c\right)^2=4-1=3\)
\(\Rightarrow\dfrac{1}{4-3\left(a^2+b^2+c^2\right)}\ge\dfrac{1}{3}\)
\(\Rightarrow P_{min}=\dfrac{1}{3}\) khi \(a=b=c=\dfrac{1}{3}\)
Casch2:đặt \(\left\{{}\begin{matrix}4-3a=x\\4-3b=y\\4-3c=z\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}a=\dfrac{4-x}{3}\\b=\dfrac{4-y}{3}\\c=\dfrac{4-z}{3}\end{matrix}\right.\)\(x+y+z=9\)
\(=>P=\dfrac{4-x}{3x}+\dfrac{4-y}{3y}+\dfrac{4-z}{3z}=\dfrac{4}{3x}+\dfrac{4}{3y}+\dfrac{4}{3z}-\left(\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}\right)\)
\(=\dfrac{\left(2+2+2\right)^2}{3.9}-1=\dfrac{4}{3}-1=\dfrac{1}{3}\)
dấu"=" xảy ra<=>x=y=z=3<=>a=b=c=1/3