Ta cm 1 bđt sau:\(a^4+b^4\ge ab\left(a^2+b^2\right)\).Thật vậy:
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)Áp dụng: \(T=\frac{a}{b^4+c^4+a}+\frac{c}{a^4+b^4+c}+\frac{b}{c^4+a^4+b}\)
\(T\le\frac{a}{bc\left(b^2+c^2\right)+a}+\frac{c}{ab\left(a^2+b^2\right)+c}+\frac{b}{ac\left(a^2+c^2\right)+b}\)
\(=\frac{a^2}{abc\left(b^2+c^2\right)+a^2}+\frac{c^2}{abc\left(a^2+b^2\right)+c^2}+\frac{b^2}{abc\left(a^2+c^2\right)+b^2}\)
Do abc=1 \(\Rightarrow T\le\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1."="\Leftrightarrow a=b=c=1\)