Chắc là a;b;c hết chứ?
\(VT=\dfrac{a}{a+b+c+b-a}+\dfrac{b}{a+b+c+c-b}+\dfrac{c}{a+b+c+a-c}\)
\(VT=\dfrac{a}{c+2b}+\dfrac{b}{a+2c}+\dfrac{c}{b+2a}=\dfrac{a^2}{ac+2ab}+\dfrac{b^2}{ab+2bc}+\dfrac{c^2}{bc+2ac}\)
\(VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\) (đpcm)
cho x,y,z>0 ,x+y+z=1 chu nhi?
\(\Rightarrow\dfrac{x}{x+y+z+y-x}=\dfrac{x}{2y+z}\)
\(\Rightarrow\dfrac{y}{1+z-y}=\dfrac{y}{x+y+z+z-y}=\dfrac{y}{2z+x}\)
\(\Rightarrow\dfrac{z}{1+x-z}=\dfrac{z}{x+y+z+x-z}=\dfrac{z}{2x+y}\)
\(\Rightarrow A=\dfrac{x}{2y+z}+\dfrac{y}{2z+x}+\dfrac{z}{2x+y}=\dfrac{x^2}{2xy+xz}+\dfrac{y^2}{2zy+xy}+\dfrac{z^2}{2xz+xz}\ge\dfrac{\left(x+y+z\right)^2}{3\left(xy+yz+xz\right)}=1\)
dau"=" xay ra<=>x=y=z=1/3