Theo bài ra , ta có :
\(\left(a+b\right)^2\ge2\sqrt{a^2b^2}-ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge2ab-ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge2ab-ab\)
\(\Leftrightarrow a^2+b^2\ge-ab\)
\(\Leftrightarrow a^2+b^2+ab\ge0\)
\(\Leftrightarrow a^2+2ab+b^2+a^2+b^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+a^2+b^2\ge0\)(Luôn đúng)
Dấu '=' xảy ra khi và chỉ khi a = b = 0