\(a+b+\frac{1}{a^2}+\frac{1}{b^2}\)
\(=\left(8a+8a+\frac{1}{a^2}\right)+\left(8b+8b+\frac{1}{b^2}\right)-15\left(a+b\right)\)
\(\ge3\sqrt[3]{8a.8a.\frac{1}{a^2}}+3\sqrt[3]{8b.8b.\frac{1}{b^2}}-15\left(a+b\right)\)
\(=12+12-15\left(a+b\right)\ge24-15=9\)
\("="\Leftrightarrow a=b=c=\frac{1}{2}\)