Cho a,b,c>0 và a2+b2+c2=1
Tìm Min \(S=a+b+c+\dfrac{1}{abc}\)
Bài 1: a) Chứng minh: (ac+bd)2+(ad-bc)2=(a2+b2)(c2+d2)
b) Chứng minh bất đẳng thức Bunhiacoopxki(ac+bd)2\(\le\) (a2+b2)(c2+d2)
Help me !!!!!!!!!!!
Cho a, b, c > 0 thoa man a + b + c = 3.
Tim GTNN : \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\)
Cho a;b;c > 0 thỏa mãn a + b + c = 1.
Tìm GTLN của biểu thức: \(T=\sqrt{2a+b}+\sqrt{2b+c}+\sqrt{2c+a}\)
a2+b2+c2+3/4 >= -a-b-c
Cho a,b,c không đồng thời bằng 0 thỏa mãn \(a^2+b^2+c^2=2\) và ab+bc+ca=1. Tìm GTLN,GTNN của a,b,c
a ) Cho a,b,c >0 C/m:
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{a^2+b^2+c^2}{a+b+c}\)
b ) Cho a,b,c > 0 . C/m :
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}.\)
c ) Cho a,b,c > 0 . C/m :
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c.\)
giúp nha mn
Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm GTNN :
\(P=\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ac}\)
Cho a, b, c ≥ 0 thỏa mãn: a + b + c = 1
. Tìm GTNN của biểu thức: T = \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)