Giải:
\(a,b\) là các số dương \(\Leftrightarrow\dfrac{a}{b}>0\)
Không giảm tính tổng quát
Ta giả sử \(a\ge b\Leftrightarrow a=b+m\left(m\ge0\right)\)
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}\)
\(=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}\)
\(=1+\dfrac{m+b}{b+m}=1+1=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\a=b\end{matrix}\right.\)
Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) (Đpcm)
Nhận xét:
Trong một BĐT có chứa chữ, nếu các chữ \(a\) và \(b\) có vai trò như nhau, ta có thể thay \(a\) bởi \(b\); \(b\) bởi \(a\), do đó ta có thể sắp thú tự tùy ý cho nên trong cách giải trên ta đã giả sử \(a\ge b\) mà không sợ mất tính tổng quát.
Thiếu đk ab > 0.
Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2=2ab\)
Vì ab > 0
\(\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow\dfrac{a^2}{ab}+\dfrac{b^2}{ab}\ge2\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)