Cho a,b dương: a;b>0, a+b<=1
Tính GTNN:\(S=\dfrac{1}{a^3+b^3}+\dfrac{1}{a^2b}+\dfrac{1}{ab^2}\)
cho a,b là số nguyên dương lớn hơn 1. giả sử a^1945 +b^1945 và a^1954 +b^1954 đều chia hết cho 2001. cmr a,b đều chia hết cho 2001
tìm số nguyên tố p và các số nguyên dương a,b sao cho \(p^a+p^b\) là số chính phương
cho a,b dương và c ≠ 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). CMR: \(\sqrt{a+b}=\sqrt{b+c}+\sqrt{c+a}\)
Cho hai số dương a và b thỏa mãn: \(a+b\le4\). Tìm GTNN của biểu thức: \(M=\dfrac{1}{a^2+b^2}+ab+\dfrac{25}{ab}\)
Cho 2 số dương a và b thỏa mãn: \(a+b\le4\). Tìm GTNN của biểu thức: \(M=\dfrac{1}{a^2+b^2}+ab+\dfrac{25}{ab}\)
Cho các số dương a, b, c thỏa mãn: a+b+c=3 và \(M=\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\)
Cho a và b là hai số thực dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{a+b}-\dfrac{1}{\sqrt{a+b}}+\dfrac{2015}{2014a+2006b+6\sqrt{ab}}\)
Cho các số dương a, b, c thỏa mãn: a+b+c=3 và \(M=\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\). CMR: \(M\ge3\sqrt{5}\)