Không mất tính tổng quát, giả sử c là số nhỏ nhất.
Ta thấy nếu thay bộ (a;b;c) bởi (a-c;b-c;0) = (x;y;0) thì \(x,y\ge0\)
Và \(a+b\ge x+y;b+c\ge y;c+a\ge x\) . Khi đó ta có:
\(VT\ge\frac{\left(x+y\right)^2}{\left(x-y\right)^2}+\frac{y^2}{y^2}+\frac{x^2}{x^2}=2+\frac{\left(x+y\right)^2}{\left(x-y\right)^2}\ge2\).
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-y\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-c=c-b\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-b\\c=0\end{matrix}\right.\)
P/s: Em ko chắc đâu nha, kể cả về cách làm lẫn chỗ xét dấu =