ta có \(\left(a+b\right)^2\ge4ab\Rightarrow1\ge4ab\Leftrightarrow ab\le\frac{1}{4}\)
\(\Rightarrow\frac{1}{4ab}\ge1\Rightarrow\frac{8}{4ab}\ge8\) hay \(\frac{2}{ab}\ge8\)
ta có
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\\ =1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}\\ =1+\frac{a+b+1}{ab}\\ =1+\frac{2}{ab}\ge1+8=9\)
(đpcm)