Ta có:
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4\Rightarrow\left\{{}\begin{matrix}a=4a'\\b=4b'\\c=4c'\end{matrix}\right.\)
\(\Rightarrow\frac{a-3b+2c}{a'-3b'+2c'}=\frac{4a'-3.4b'+2.4c'}{a'-3b'+2c'}=\frac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)
Ta có:
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4\Rightarrow\left\{{}\begin{matrix}a=4a'\\b=4b'\\c=4c'\end{matrix}\right.\)
\(\Rightarrow\frac{a-3b+2c}{a'-3b'+2c'}=\frac{4a'-3.4b'+2.4c'}{a'-3b'+2c'}=\frac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)
a) Cho a,b,c,d >0 và dãy tỉ số :\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính :P=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
b)Tìm giá trị nguyên dương của x và y sao cho:\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
hộ tui vs các chế
Cho tỉ lệ thức \(\dfrac{a}{c}=\dfrac{c}{b}\) chứng minh rằng:
a)\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
b)\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
Cho \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính P = \(\dfrac{\left(3a+2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
CMR nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì
a, \(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
b, \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
c,\(\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\)
cho a,b,c > 0 và dảy tỉ số: \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
tính: P = \(\dfrac{(3a-2b)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Chứng minh \(\dfrac{a}{b} = \dfrac{c}{d}\) nếu biết
a, \(\dfrac {4a-3b}{4c-3d} = \dfrac {4a+3b}{4c+3d}\)
b, \(\dfrac {2a-3b}{2a+3b} = \dfrac {2c-3d}{2c+3d}\)
Cho a , b, c > 0 và dãy tỉ số \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính P= \(\dfrac{\left(3a-2b\right).\left(3b-2c\right).\left(3c-2a\right)}{\left(3a-c\right).\left(3b-a\right).\left(3c-b\right)}\)
Cho a,b,c > 0 và dãy tỉ số : \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính M =\(\dfrac{\left(3a-2b\right).\left(3b-2c\right).\left(3c-2a\right)}{\left(3a-c\right).\left(3b-a\right).\left(3c-b\right)}\)
Tìm a,b,c biết A=0 biết A=(-2a^2b^3)^10+(3b^2c^4)^15