Tìm a và b để đường thẳng d1:y=ac+b cắt đường thẳng d2:y=bx-a tại điểm M(2;1)
Cho tam giác ABC có A(-2;0) và đường cao BE x+y-2=0 trung tuyến BM 2x+y-3=0 Tùm tọa độ đỉnh B và C
Cho 4 đường thẳng sau: d1:y=x; d2:y=-x+2; d3:y=x-2 và d4:y=mx+n.Tìm d4 để 4 đường thẳng trên cắt nhau tại 4 điểm tạo thành hình vuông
a) Tam giác ABC có đặc điểm gì nếu thỏa mãn : \(sin\frac{A}{2}=\frac{a}{2\sqrt{bc}}\)
a,b,c là cạnh tam giác
A,B,C là góc tam giác
b) Cho các điểm A( 4;-3) , B( 4;1 ) và đường thẳng (d) : x +6y = 0. Viết phương trình đường tròn (C) đi qua A và B sao cho tiếp tuyến của đường tại A và B cắt nhau tại một điểm thuộc (d)
Trong mặt phẳng Oxy, cho điểm I(-1;1) và đường thẳng d: x+y+2=0.Viết phương trình đường tròn tâm I cắt d tại hai điểm phân biệt A,B sao cho AB=2
Cho tam giác ABC có A(5;-3), trọng tâm G(3;1), đỉnh B thuộc đường thẳng đenta 2x+y-4=0. Tìm B,C biét BC= \(2\sqrt{2}\) và B có tọa độ nguyên
Cho tam giác ABC có A(-1;0) , B(4;0) , C(0;m) và m khác 0. Gọi G là trọng tâm của tam giác ABC. Xđ m để tam giác GAB vuông tại G