Ta có:
\(ab+cd=ab.1+cd.1\)
\(=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)
\(=abc^2+abd^2+cda^2+cdb^2\)
\(=bc\left(ac+bd\right)+ad\left(bd+ac\right)\)
\(=bc.0+ad.0\)
\(=0\)
Ta có:
\(ab+cd=ab.1+cd.1\)
\(=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)
\(=abc^2+abd^2+cda^2+cdb^2\)
\(=bc\left(ac+bd\right)+ad\left(bd+ac\right)\)
\(=bc.0+ad.0\)
\(=0\)
Cho a2 + b2 = 1, c2 + d2 = 1, ac + bd = 0. Cmr : ab + cd = 0
Cho a + b + c + d = 0 và ab + bc + ca = 1
Tính \(P=\dfrac{\left(ab-cd\right)\left(bc-ad\right)\left(ac-bd\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
Cho hình thang ABCD, AB//CD, AC vuông góc với BD a, CM: AB^2+CD^2= AD^2+ BC^2 b, AC^2+BD^2=(AB+CD)^2c, Kẻ đường cao AH , , đường trung bình MN của hình thang ABCD biết BD=9cm, AC=12cm. Tính diện tích tứ giác AMHN
Bài 1: 1) Trên tia Ax lấy các điểm B, C, D theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.
a) Tính các tỷ số số AB/ BC và BC/CD
b) Chứng minh BC2 = AB.CD
2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.
a) Tính tỉ số AB/CD
b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD
Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.
a) Chứng minh AD/BD = AE/EC
b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.
Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.
a) Chứng minh AD/AB = AE/AC
b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC
Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:
a) Tỷ số DE/AE
b) Độ dài các đoạn thẳng AE, DE và AD.
Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC
b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.
cho các số nguyên dương a>b>c>d thỏa mãn \(a^2+ac-c^2=b^2+bd-d^2\). Cmr: ab+cd là hợp số
Cho a2+b2=c2+d2=1; ac+bd=0. CMR: a2+c2=b2+d2=1
Cho hình thang ABCD (AB song song với CD, AB>CD) có diện tích bằng 1 và \(BD\ge AC\). CHứng minh: \(BD\ge\sqrt{2}\)
Gọi O là giao điểm của hai đường chéo AC và BD trong hình thang ABCD (AB//CD). Đường thẳng qua O và song song với AB và CD cắt AD và BC lần lượt tại M và N
a, CMR: OM = ON
b, CMR: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c, Biết SAOB = a2, SCOD = b2. Tính SABCD
d, Nếu góc D > góc C > 90 độ. CMR: BD > AC
Cho a2 + b2 = 1 , c2 + d2 = 0 , ad + bc + 0 . Chứng minh : ab + cd = 0 .