\(A=1+2+2^2+2^3+..........+2^{10}\)
\(\Leftrightarrow2A=2+2^2+..............+2^{11}\)
\(\Leftrightarrow2A-A=\left(2+2^2+......+2^{11}\right)-\left(1+2+....+2^{10}\right)\)
\(\Leftrightarrow A=2^{11}-2< 2^{11}\)
\(\Leftrightarrow A< 2^{11}\)
\(A=1+2+2^2+2^3+.....+2^{10}\)
\(\Rightarrow2A=2\left(1+2+2^2+2^3+.....+2^{10}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+.....+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+.....+2^{11}\right)-\left(1+2+2^2+2^3+......+2^{10}\right)\)\(\Rightarrow A=2^{11}-1\)
\(A< 2^{11}\)
ta có : \(A=1+2+2^2+2^3+...+2^{10}\)
\(A=2^0+2^1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2.\left(2^0+2^1+2^2+2^3+...+2^{10}\right)\)
\(2A=2^1+2^2+2^3+2^4+...+2^{11}\)
\(\Rightarrow2A-A=A=\left(2^1+2^2+2^3+2^4+...+2^{11}\right)-\left(2^0+2^1+2^2+2^3+...+2^{10}\right)\)
\(A=2^{11}-2^0=2^{11}-1< 2^{11}\)
\(\Leftrightarrow A< 2^{11}\)
vậy \(A< 2^{11}\)