Ta có:
\(a^3+b^3-\left(a+b\right)\)
\(=a^3+b^3-a-b\)
\(=a\left(a^2-1\right)+b\left(b^2-1\right)\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)\)
Vì \(a\left(a-1\right)\left(a+1\right)\) là tích của ba số tự nhiên liên tiếp
\(\Rightarrow a\left(a-1\right)\left(a+1\right)\) chia hết cho 3
Vì \(b\left(b-1\right)\left(b+1\right)\) là tích của ba số tự nhiên liên tiếp
\(\Rightarrow b\left(b-1\right)\left(b+1\right)\) chia hết cho 3
\(\Rightarrow a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)\)chia hết cho 3
\(\Rightarrow a^3+b^3-\left(a+b\right)\) chia hết cho 3
Mà \(a^3+b^3\) chia hết cho 3
\(\Rightarrow a+b\) cũng chia hết cho 3
\(\RightarrowĐpcm\)