Violympic toán 8

Juvia Lockser

Cho A = n4 - 4n3 -4n2 +16n ( ∀ n chẵn và n>4)

CMR: A⋮ 384.

Akai Haruma
18 tháng 6 2019 lúc 11:49

Lời giải:

Ta có:
\(A=n^4-4n^3-4n^2+16n=n^3(n-4)-4n(n-4)\)

\(=(n^3-4n)(n-4)=n(n^2-4)(n-4)=n(n-2)(n+2)(n-4)\)

Vì $n$ chẵn nên đặt $n=2k$ ($k\in\mathbb{N}, k>2$)

Khi đó:
\(A=2k(2k-2)(2k+2)(2k-4)=16(k-2)(k-1)k(k+1)(1)\)

Vì $k-2,k-1,k,k+1$ là 4 số tự nhiên liên tiếp nên trong đó chắc chắn tồn tại một số chia hết cho $4$ và một số chia $4$ dư $2$

\(\Rightarrow (k-2)(k-1)k(k+1)\vdots 8(2)\)

Mặt khác: $k-2, k-1, k$ là 3 số tự nhiên liên tiếp nên chắc chắn trong đó tồn tại một số chia hết cho $3$.

\(\Rightarrow (k-2)(k-1)k\vdots 3\Rightarrow (k-2)(k-1)k(k+1)\vdots 3(3)\)

Từ (2); (3) mà $(3,8)=1$ nên $(k-2)(k-1)k(k+1)\vdots 24$ $(4)$

Từ \((1);(4)\Rightarrow A=16(k-2)(k-1)k(k+1)\vdots (16.24)\)

Hay $A\vdots 384$ (đpcm)

Akai Haruma
20 tháng 6 2019 lúc 15:55

Lời giải:

Ta có:
\(A=n^4-4n^3-4n^2+16n=n^3(n-4)-4n(n-4)\)

\(=(n^3-4n)(n-4)=n(n^2-4)(n-4)=n(n-2)(n+2)(n-4)\)

Vì $n$ chẵn nên đặt $n=2k$ ($k\in\mathbb{N}, k>2$)

Khi đó:
\(A=2k(2k-2)(2k+2)(2k-4)=16(k-2)(k-1)k(k+1)(1)\)

Vì $k-2,k-1,k,k+1$ là 4 số tự nhiên liên tiếp nên trong đó chắc chắn tồn tại một số chia hết cho $4$ và một số chia $4$ dư $2$

\(\Rightarrow (k-2)(k-1)k(k+1)\vdots 8(2)\)

Mặt khác: $k-2, k-1, k$ là 3 số tự nhiên liên tiếp nên chắc chắn trong đó tồn tại một số chia hết cho $3$.

\(\Rightarrow (k-2)(k-1)k\vdots 3\Rightarrow (k-2)(k-1)k(k+1)\vdots 3(3)\)

Từ (2); (3) mà $(3,8)=1$ nên $(k-2)(k-1)k(k+1)\vdots 24$ $(4)$

Từ \((1);(4)\Rightarrow A=16(k-2)(k-1)k(k+1)\vdots (16.24)\)

Hay $A\vdots 384$ (đpcm)


Các câu hỏi tương tự
Cao Thi Thuy Duong
Xem chi tiết
blinkwannable
Xem chi tiết
vvvvvvvv
Xem chi tiết
Măm Măm
Xem chi tiết
Saiyan God
Xem chi tiết
Măm Măm
Xem chi tiết
Nhiên Hương Nguyễn Lê
Xem chi tiết
Trung Nguyen
Xem chi tiết
Bí Mật
Xem chi tiết