Cho a,b,c > 0 thỏa mãn \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2}\) . CMR:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cho a,b,c thỏa mãn abc=1 và \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\). CMR có ít nhất 1 số trong 3 số a,b,c bằng 1
Cho a,b>0 thoả mãn a+b=1
CMR: \(\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\left(c+\frac{1}{c}\right)\ge\frac{25}{4}\)
cho a,b,c>0 thỏa mãn \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge2\). Cmr: abc ≤ \(\frac{1}{8}\)
Cho \(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}=\frac{1}{a-b+c}\) và a,b,c≠0 thỏa mãn: a<b<c
CMR: \(\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}-b+c^{2019}}\)
Cho 3 số dương a,b,c thỏa mãn a+b+c=3. CMR
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho 3 số dương a,b,c thỏa mãn a+b+c = 6.CMR
\(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\ge\frac{3}{2}\)
1. Cho 3 số dương x, y, z thỏa mãn x+y+z=1. TÌM GTNN của biểu thức: A=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2. Cho a, b,c>0 và a+b+c=3. Tìm GTNN của biểu thức S=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
3. CHo x,y,z là 3 số thực dương thỏa mãn đk: x+y+z≤ 6.
CM: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) ≥ \(\frac{3}{2}\).
4. Cho 4 số dương a, b,c, d . CMR \(a^4+b^4+c^4+d^4\) ≥ 4abcd.
Cho hai số dương a,b thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}=2\) . Cmr \(a+b\ge2\)