Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Huy Thành

Cho A = \(\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\).Tìm các số nguyên x;y;z để \(0\le A\le1\).

ngonhuminh
11 tháng 4 2018 lúc 20:50

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\ge0\\\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\le1\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

(1) đúng với mọi x,y,z thuộc R =>đúng với mọi x,y,z thuộcZ

điều kiện cần thỏa mãn (2)

\(\left\{{}\begin{matrix}\left|3x-2y\right|\le1\\\left|y+z\right|\le1\\\left|z-x\right|\le1\end{matrix}\right.\) \(\begin{matrix}\left(a\right)\\\left(b\right)\\\left(c\right)\end{matrix}\)

\(\left(b\right)+\left(c\right)\Leftrightarrow\left|y+z\right|+\left|z-x\right|=\left|y+z\right|+\left|x-z\right|\ge\left|y+z+x-z\right|=\left|y+x\right|\) (d)

\(\left|3x-2y\right|+\left|2y+2x\right|\ge\left|3x-2y+2y+2x\right|=\left|5x\right|\)

cần : \(\left|5x\right|\le2\Leftrightarrow x=\left\{0;\pm1\right\}\)

x=0 từ (a) => y =0 ; từ (b) (c)=z =0 ; (x;y;z) =(0;0;0)

x=1 từ (a) =y={1;2}

với y=1 từ (b) => z=-1 ; (x;y;z) =(1;1;-1)

với y=2 từ (b) => z =-2 từ (c) $|-2-1| \ne 0$ loại

x=-1 từ (a) =y={-1;-2}

với y=-1 từ (b) => z= 1 ; (x;y;z) =(-1;-1;1)

với y=-2 từ (b) => z = 2 từ (c) $| 2+1| \ne 0$ loại

kết luận

(x;y;z) =(0;0;0);(1;1;1); (-1;-1;1)


Các câu hỏi tương tự
Jin Yi Hae
Xem chi tiết
Nguyễn Ngọc Hà
Xem chi tiết
crewmate
Xem chi tiết
Vũ Mạnh Dũng
Xem chi tiết
Trí Phạm
Xem chi tiết
NGUYỄN THỊ LAN ANH
Xem chi tiết
Trần Hoàng Anh
Xem chi tiết
Hồng Đức Nguyễn
Xem chi tiết
Phạm Đức Anh
Xem chi tiết