Hiển nhiên \(a=0\) ko phải nghiệm
\(a^2-3a-1=0\Leftrightarrow a^2-1=3a\) \(\Rightarrow a-\dfrac{1}{a}=3\Rightarrow\left(a-\dfrac{1}{a}\right)^2=9\)
\(\Rightarrow a^2+\dfrac{1}{a^2}-2=9\Rightarrow a^2+\dfrac{1}{a^2}=11\)
\(Q=\dfrac{1}{a^2+\dfrac{1}{a^2}+1}=\dfrac{1}{11+1}=\dfrac{1}{12}\)