a,\(\frac{\left(2x^3\right)}{4x^7}\)
b,\(\frac{\left(x-1\right)}{\left(x+1\right)^2}.\frac{x^2+2x+1}{x^2-1}\)
c,\(\frac{x^2-7x+12}{x^2-16}\)
d, \(\frac{x-1}{\sqrt{x+1}}:\left(\sqrt{x-1}\right)\)
\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
Bài 9. Rút gọn các phân thức sau
a) \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
d) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
e) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
f) \(\frac{x^{24}+x^{20}+x^{16}+...+x^4+1}{x^{26}+x^{24}+x^{22}+...+x^2+1}\)
\(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
a) Rút gọn P
b) Với giá trị nào của a thì P=7
c) Với giá trị nào của a thì P>6
\(B=\left(\dfrac{1}{\sqrt{x}-\sqrt{y}}+\dfrac{1}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) rút gọn B
b) chứng minh B >/ 0
c) So sánh B với căn B
Rút gọn phân thức
1/\(\frac{x^{3^{ }}-y^{3^{ }}+z^{3^{ }}+3xyz}{\left(x+y\right)^{2^{ }}+\left(y+z\right)^2+\left(z-x\right)^2}\)
2/\(\frac{x^{3^{ }}+y^{3^{ }}+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
3/\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^3\right)+c^4\left(a^2-b^2\right)}\)
Xét bt P = (\(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\)). \(\frac{\left(1-x\right)^2}{2}\). Rút gọn bt P.
\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
1: cho biểu thức:
P= \(\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
a, rút gọn P b, tìm x để P<1 c, tìm x ∈ z để P ∈ Z
2: cho biểu thức : P= \(\left(\frac{x+1}{x-1}-\frac{x^2+x}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{1}{1-x}\right)\)
a, rút gọn P
b, tính giá trị của P với những x thỏa mãn : /2x-1/ =4
c, tìm x để 2P > \(\frac{-x}{2}\)