a)Rút gọn biểu thứcP=\((\dfrac{\sqrt{a-2}+2}{3})(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}):(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\)
b)Cho các số dương a,b thỏa mãn a+b=\(\sqrt{2017-a^2}+\sqrt{2017-b^2}.Chứng\) Minh \(a^2+b^2=2017\)
a, Giải phương trình: 2\(\left(x-\sqrt{2x^2+5x-3}\right)=1+x\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
b, Cho ba số thực dương a,b,c thỏa mãn a,b,c=1
Chứng minh rằng:\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
Cho a;b;c >0 thỏa mãn \(a+b+c=\dfrac{1}{abc}\)
Cmr: \(\sqrt{\dfrac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}}=a+b\)
Giúp em với ạ. Em cảm ơn các anh/chị ạ.
cho \(\sqrt{a}+\sqrt{\sqrt{b}+}\sqrt{c}=\sqrt{3}va\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}=3\)
tính M=\(\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
cho a,b,c>0 thỏa mãn a+b+c=1.
tính P=\(\sqrt{\frac{\left(a+bc\right)\left(b+ca\right)}{c+ab}}+\sqrt{\frac{\left(c+ab\right)\left(b+ca\right)}{a+bc}}+\sqrt{\frac{\left(a+bc\right)\left(c+ab\right)}{b+ca}}\)
từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)
ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)
=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)
\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )
^_^
1 Rút gọn:
a) A=\(\frac{\sqrt[]{2+\sqrt[]{3}}}{4}+\sqrt[]{\frac{2-\sqrt[]{3}}{16}}+\frac{1}{\sqrt[]{3}+\sqrt[]{2}+1}\)
b)\(\left(\sqrt[]{a+\sqrt[]{a^2-8}}\right).\left(\sqrt[]{a-2\sqrt[]{2}}-\sqrt[]{a+2\sqrt[]{2}}\right),a>=2\sqrt[]{2}\)
2.Cho x= \(\sqrt[]{2-\sqrt[]{3}}.\left(\sqrt[]{6}+\sqrt[]{2}\right)-\frac{2\sqrt[]{6}+\sqrt[]{3}}{\sqrt[]{8}+1}\). Tính A= \(x^5-3x^4-3x^3+6x^2-20x+2022\)
3. Cho a,b,c >0, \(\frac{a}{a+b}=\frac{b}{c+a}=\frac{c}{a+b}\). CMR: \(\frac{\left(a+b\right)^3}{c^3}+\frac{\left(b+c\right)^3}{a^3}+\frac{\left(a+c\right)^3}{b^3}+24\)
Rút gọn:
a) \(\frac{a-b}{\sqrt{a}-\sqrt{b}}\)-\(\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(\(a\ge0\),\(b\ge0\),\(a\ne b\))
b)\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)\(\left(a>0,b>0,a\ne b\right)\)
C)\(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)\(\left(a>0,a\ne1,a\ne4\right)\)
d)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\)\(\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)\(\left(a>0,b>0,a\ne b\right)\)
e)\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right)\):\(\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)\(\left(x>0,x\ne9\right)\)
Cho các số a, b, c dương thỏa mãn: \(b^2c^2=\left(ac+b\sqrt{b^2+c^2}\right)\left(c\sqrt{a^2+b^2-b^2}\right)\) Chứng minh rằng:\(b^2=ac\)