\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow b^2+ab+a^2+ab-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Sao không ai dùng AM-GM nhỉ?
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}=\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)
Dấu "= " xảy ra <=> a=b